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The method of associated matrices is used to obtain Galerkin type representations.
Fundamental solutions are then obtained for the cases of a point body couple and
a point microstretch force. A formula for calculating the total couple acting on a
rigid body rotating axi-symmetrically in a microstretch fluid is deduced. A generalized
reciprocal theorem is deduced. An application for a rigid sphere rotating in a mi-
crostretch fluid is discussed. The results of the application are represented graphically.

1. Introduction
The theory of microfluids presented by Eringen in 1964 gives a mathematical

formulation of a general theory of fluid microcontinua. It presents a new balance law,
namely the law of conservation of micro-inertia. Eringen (1964) adapted a physical
model in which each continuum particle is assigned a substructure; i.e. each material
volume element contains microvolume elements which can translate, rotate and deform
independent of the motion of the macrovolume. However, each deformation of a
macrovolume element can be expected to produce a subsequent deformation of the
microvolume elements.

A subclass of the microfluids is that of the microstretch fluids (sometimes called
Eringen fluids). In this type of fluids, material points are considered to stretch,
expand or contract, in addition to rotating about their centroids. The microstretch
fluids have seven degrees of freedom: three for translation, three for rotation and one
for stretch. These fluids model slurries, paper pulps, colloidal fluids, animal blood,
bubbly fluids and other biological fluids (Eringen 1998). Numerous experiments have
been performed during the last two decades that show that some of these fluids
exhibit microstretch effect (see Rogausch 1976; Nagasawa 1981; Bird, Armstrong &
Hassager 1987; Kröger 2004; Bor-Kucukatay et al. 2005 and the references therein).

Blood consists of suspensions of particulate cells in plasma of organic and inorganic
substances. Red blood makes up 99 % of the volume of particulate matter (Eringen
1998). The volumetric percentage of red cells in blood varies between 40 % and 50 %
of the whole blood. Human red blood cells are biconcave, disclike particles with
an average diameter of 7.6 μm and a thickness of 2.8 μm. They are highly flexible.
The shear modulus of red blood cells is about 0.004 dyn cm−1. White blood cells in
blood are nearly spherical and about 8 μm in diameter. They are stiffer but much less
numerous than red cells. Blood also contains a small amount of platelets in the form
of ellipsoidal particles. It seems that human blood (and for that matter animal blood
as well) can be modelled with microstretch fluid continuum as a suspension rheology
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with flexible suspensions in flowing through small arteries (Eringen 1998). With
these considerations, Ariman (1971), Skalak & Tözeren (1981) and Parvathamma &
Devanathan (1983) have used the microstretch and micropolar continuum theories of
Eringen to discuss blood flow in arteries.

The ability to deform is crucial to the red blood cell if it is to perform its function
of oxygen delivery, and it is also a determinant of cell survival time during circulation
(Bor-Kucukatay et al. 2005). Nagasawa (1981) and Bor-Kucukatay et al. (2005) have
measured the elongation index of red blood cells under different conditions. Rogausch
(1976) measured the reaction of human red cell deformability on sphering agents.

The problem of axisymmetric Stokesian flow of a micropolar fluid past a sphere
with a no-slip boundary condition was discussed by Ramkissoon and Majumdar
(1976). Basset (1961) derived the expressions for the force and torque exerted by the
fluid on a translating and rotating rigid sphere with a slip-flow boundary condition at
its surface (e.g. a settling aerosol sphere). Hoffmann, Marx & Botkin (2007) deduced
a formula for the drag acting on the surface of a sphere moving with constant velocity
in a micropolar fluid. Gayen & Alam (2006) discussed the algebraic and exponential
instabilities in a sheared micropolar granular fluid. The problem of micropolar fluid
flows around a sphere and a cylinder was discussed by Hayakawa (2000). Mitarai,
Hayakawa & Nakanishi (2002) showed that a micropolar fluid model successfully
describes collisional granular flows on a slope. Faltas & Saad (2005) discussed the
Stokesian flow with slip caused by the axisymmetric motion of a sphere bisected by
a free surface bounding a semi-infinite micropolar fluid. Goldhirsch, Noskowicz &
Bar-Lev (2005) derived hydrodynamic equations for nearly smooth granular gases
from the pertinent Boltzmann equation. Other micropolar fluid flows are shown in
Lukaszewicz (1999). Sherief, Faltas & Saad (2008) discussed the slip at the surface of
a sphere translating perpendicular to a plane wall in a micropolar fluid.

Many researchers, as the ones mentioned above, have discussed the micropolar
fluid flow problems. However, the microstretch fluid flow has attracted the attention
of a low number of researchers. Ieşan (1997) derived a uniqueness theorem for an
incompressible microstretch fluid. Narasimhan (2003) considered pulsatile flows of
microstretch fluids due to a sinusoidally varying pressure gradient in circular tubes.
Ariman (1970) considered the problem of Poiesuille flow between two parallel plates in
a microstretch fluid. Eringen (1964) assumed the flow of incompressible microstretch
fluids in straight circular arteries to be steady.

Here, we obtain Galerkin-type representations for a microstretch fluid rotating
axisymmetrically by using the method of associated matrices, and then we get the
fundamental solutions in the cases of concentrated couple and point microstretch
force. We then deduce a general formula to evaluate the couple acting on the surface
of a rigid body rotating in a microstretch fluid flow. We also apply this result to the
problem of a sphere rotating in a microstretch fluid flow with slip and spin boundary
conditions. Furthermore, we derive a generalized reciprocal theorem.

2. Field equations
The field equations for an incompressible steady Stokesian microstretch fluid flow

are given by (Eringen 1998):

div q = 0, (2.1)

(λ + 2μ + κ) grad div q − (μ + κ) curl curl q + κ curl ν − grad p + λo grad ϕ = −ρ F,

(2.2)
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(α + β + γ ) grad div ν − γ curl curl ν + κ curl q − 2 κ ν = − ρ C, (2.3)

ao(∇2 − λ1)ϕ = −ρ L − πo, (2.4)

where q and ν are the velocity and microrotation vectors; p is the fluid pressure at
any point; ϕ is the microstretch function; ρ is the fluid density; and πo represents
inertial micropressure. Also, F, C and L represent body force vector, body couple
vector and body microstretch force, respectively. The material constants λo, ao, λ1,
λ, μ and κ represent viscosity coefficients for the translational motions, and α, β

and γ are the viscosity coefficients for the rotary motions. The six viscosities λ, μ,
κ , α, β and γ are viscosity coefficients for translational and rotational motions of
microelements in the case of micropolar fluid flow. Additional viscosities λo, ao and
λ1 over the micropolar fluids emanate from the stretching of the microelements (e.g.
suspensions, blood cells, bubbles and polymer melts). All these viscosities are assumed
to be constant, depending on the natural state of the fluid. The Laplacian operator is
represented by ∇2.

Neglecting the thermal effect, these material constants have to satisfy the following
inequalities (Eringen 1998):

2μ + κ � 0, κ � 0, λ1 > 0, 3λ + 2μ + κ � 3λ2
0

/
λ1,

γ � 0, γ � |β|, 3α + β + γ � 0.

}
(2.5)

The constitutive equations for the stress tensor, the couple stress tensor, the internal
microstretch vector, microstress tensor and the difference between the normal stress T
and the micropressure S for an incompressible microstretch fluid flow are, respectively,
given by

tij = (λoϕ − p)δij + μ(qj,i + qi,j ) + κ(qj,i − εijkνk), (2.6)

mij = ανr,r δij + βνi,j + γ νj,i − boεijkϕ,k, (2.7)

mk = aoϕ,k + boεkijνi,j , (2.8)

S − T = −πo + λ1ϕ, (2.9)

where bo is a material constant and εijk is the alternating tensor defined by

εijk =

⎧⎨
⎩

1 if the permutation (i, j, k) is even;
−1 if the permutation (i, j, k) is odd;

0 otherwise.

3. Galerkin representations of the basic equations
The method of associated matrices utilized by Sandru (1966) and Chowdhury &

Glockner (1974) in the theory of elasticity and by Ramkissoon (1977, 1978) in the
theory of micropolar fluids is used to obtain Galerkin-type representations. The
fundamental singular solutions of the field equations due to a concentrated body
couple and a concentrated microstretch force are then obtained.

Our aim now is to solve the system of governing equations (2.1)–(2.4) of eight
differential equations of the unknown fields q, ν, p and ϕ with the aid of the
elementary matrix operations. Working with the Cartesian coordinates (x1, x2, x3);
we define the Laplacian operator d2 as follows:

∇2 = d2 = ∂2
1 + ∂2

2 + ∂2
3 with ∂i =

∂

∂xi

, i = 1, 2, 3.
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We shall use the following matrices:

I =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , X =

⎡
⎣ ∂1

∂2

∂3

⎤
⎦ , Y =

⎡
⎣ 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎤
⎦ and

Z =

⎡
⎢⎣

∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂3
3

⎤
⎥⎦ . (3.1)

One can easily verify the following relations:

Yu = ∇ × u, Zu = ∇(∇ · u), XT X = d2, XT Y = 0, XT Z = d2XT ,

YX = 0, YZ = 0, Y 2 = −d2I + Z, ZX = d2X, Z2 = d2Z, XXT = Z. (3.2)

In the above relations XT denotes the transpose of X and u = [u1 u2 u3]
T is any

vector function.
The system of equations (2.1)–(2.4) can be represented in the following matrix form:

A

⎡
⎢⎣

q
ν

p

ϕ

⎤
⎥⎦ =

⎡
⎢⎣

−ρ F
−ρC

0
−ρ L − πo

⎤
⎥⎦ . (3.3)

The matrix A is given by

A =

⎡
⎢⎢⎢⎣

L1I κY −X λoX

κY L2I + (α + β)Z O O

XT OT 0 0

OT OT 0 (aod
2 − λ1)

⎤
⎥⎥⎥⎦ , (3.4)

where

L1 = (μ + κ) d2, L2 = γ d2 − 2 κ and OT = [0 0 0].

The solution of the system (3.3) takes the form⎡
⎢⎣

q
ν

p

ϕ

⎤
⎥⎦ = A−1

⎡
⎢⎣

−ρ F
−ρC

0
−ρL − πo

⎤
⎥⎦ . (3.5)

The problem now reduces to finding the inverse matrix A−1 of (3.4). This matrix is
found to be

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L2(d
2I − Z)

L3d2

−κY

L3

X

d2
O

−κY

L3

L1L4I + {κ2 − (α + βL1)Z}
L3L4

O O

−XT

d2
OT (μ + κ)

λo

(aod2 − λ1)

OT OT 0
1

(aod2 − λ1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.6)
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where L3 = L1L2 + κ2d2 and L4 = (α + β + γ )d2 − 2κ . Substituting (3.6) into (3.5), we
obtain the following Galerkin-type representations:

q = ∇2(γ ∇2 − 2 κ)G − (γ ∇2 − 2κ)∇(∇ · G)

− κ{(α + β + γ )∇2 − 2 κ}∇ × H + ∇ Ψ, (3.7)

ν = − κ ∇2(∇ × G) + (μ + κ) ∇2 {(α + β + γ ) ∇2 − 2 κ}H
+ {κ2 − (μ + κ)(α + β)∇2}∇(∇ · H), (3.8)

p = −∇2{γ (μ + κ)∇2 − κ(2 μ + κ)}(∇ · G) + λoΦ, (3.9)

ϕ = Φ, (3.10)

where the functions G, H, Ψ and Φ satisfy the following differential equations:

∇4{γ (μ + κ)∇2 − κ(2 μ + κ)}G = −ρ F, (3.11)

∇2{γ (μ + κ)∇2 − κ(2μ + κ)}{(α + β + γ )∇2 − 2 κ}H = −ρC, (3.12)

∇2Ψ = 0, (3.13)

(ao∇2 − λ1)Φ = −ρ L − πo. (3.14)

4. Three-dimensional concentrated couple
In this section we consider the case of a concentrated couple in the absence of any

body force or body microstretch force in an infinite unbound microstretch fluid flow.
We take

F = 0, ρC = N δ(x − xo) and L = 0, (4.1)

where N is a constant vector.
Therefore, the solutions of (3.11)–(3.14) are given by

H =
N

4π γ (μ + κ)(α + β + γ )r

{
1

λ2 ζ 2
+

exp(−λ r)

λ2(λ2 − ζ 2)
+

exp(−ζ r)

ζ 2(ζ 2 − λ2)

}
, (4.2)

G = 0, Ψ = 0 and Φ =
πo

λ1

, (4.3)

where

ζ 2 =
2 κ

(α + β + γ )
.

Substituting the above-obtained results into (3.7)–(3.10), we obtain

ν =
N

4π γ

[
exp(−λr)

r
− 1

r3

{
γ

2(2 μ + κ)
+

(μ(α + β)ζ 2 + κ2)

κ(2 μ + κ)(ζ 2 − λ2)
(1 + λr) exp(−λr)

+
γ

2κ
(1 + ζ r) exp(−ζ r)

}]
+

(N · r) r

4π r5

[
3

2(2μ + κ)
+

(3 + 3 ζ r + ζ 2r2)

2 κ
exp(−ζ r)

+
(μ(α + β)ζ 2 + κ2)

γ κ(2μ + κ)(ζ 2 − λ2)
{3 + 3λr + λ2r2} exp(−λr)

]
, (4.4)

and

q =
1

4π(2μ + κ)
∇ × N

(
1 − exp(−λr)

r

)
. (4.5)

For the case of a point couple of magnitude Nz acting along the z direction, we have
N =Nzêz, where R, φ and z are the cylindrical coordinates. Then the φ component of
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the fluid velocity takes the form

qφ =
RNz

4π(2μ + κ)

(
1 − (1 + λr) exp(−λr)

r3

)
. (4.6)

If Ωc represents the angular velocity due to a point couple of magnitude Nz, then

Ωc =
Nz

4π(2μ + κ)

(
1 − (1 + λr) exp(−λr)

r3

)
. (4.7)

At large distances from the obstacle in an unbound medium the flow field becomes
identical to the one that would be generated by the action of a point couple equal in
magnitude to the couple on the obstacle, provided that the fluid is at rest at infinity;
hence

lim
r→∞

{r3 Ωc} = lim
r→∞

{r3 Ω}. (4.8)

Therefore, the desired formula can be obtained by taking the limit as r → ∞ for (4.7)
to get

Nz = 4π(2μ + κ) lim
r→∞

(r3Ω), (4.9)

where Ω is the angular velocity of the fluid in the case of the presence of the obstacle
(rigid body).

In the limiting case when κ → 0, the well-known classical result of Stokes for total
acting couple in the case of viscous fluids (Lamb 1974) can be recovered, i.e.

No = 8πμ lim
r→∞

{r3Ω}. (4.10)

5. Concentrated microstretch force
The case of a concentrated microstretch force density in the absence of any other

body force or body couple in an unbound microstretch medium is now considered.
For this aim we assume that

F = 0, C = 0 and ρL = Mδ(x − xo), (5.1)

where M is a constant.
Then, (3.11)–(3.14) have the solutions

G = 0, H = 0 and Ψ = 0, (5.2)

Φ =
M

4π ao

(
exp(−r

√
λ1/ao)

r

)
+

πo

λ1

. (5.3)

Substituting the solutions given above into (3.7)–(3.10), we get

q = 0, ν = 0, ϕf =
M

4 π ao

(
exp(−r

√
λ1/ao)

r

)
+

πo

λ1

(5.4)

and the pressure

p =
M λo

4 π ao

(
exp(−r

√
λ1/ao)

r

)
+

πoλo

λ1

, (5.5)

where ϕf represents the microstretch function due to a microstretch force of magnitude
M.
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Therefore, the microstretch function due to a point microstretch force of magnitude
M acting at the origin is given by

M = 4 π ao(r exp(−r
√

λ1/ao))

(
ϕf − πo

λ1

)
. (5.6)

At sufficiently large distances from the body in an unbound microstretch medium,
the flow field becomes identical to the one that would be generated by the action of
a point microstretch force equal in magnitude to the microstretch force acting on the
body given that the fluid is at rest at infinity; then

lim
r→∞

(
r exp(−r

√
λ1/ao)

{
ϕf − πo

λ1

})
= lim

r→∞

(
r exp(−r

√
λ1/ao)

{
ϕ − πo

λ1

})
. (5.7)

Taking the limit to be r tends to infinity in (5.6), and using the above result we obtain
the following relation:

M = 4π ao lim
r→∞

(
r exp(−r

√
λ1/ao)

{
ϕ − πo

λ1

})
. (5.8)

6. Generalized reciprocal theorem
In this section we shall prove a reciprocal theorem for the microstretch fluid flow.
Reciprocity theorems have become increasingly important lately because of their

uses in the numerical solution of boundary value problems by the boundary element
method (BEM; Muldowney & Higdon 1995; Power 1995). This method is rapidly
replacing the finite element method in many engineering applications. The BEM
needs some theoretical preparations, namely a reciprocity theorem and fundamental
solutions, as a starting point.

Theorem:
Let (qi, νi, ϕ, p, πo, S − T , tij , mij , mi, Fi, Ci, L) and (q ′

i , ν ′
i , ϕ′, p′, π′

o, S ′ − T ′,
t ′
ij , m′

ij , m′
i , F ′

i , C ′
i , L′) be any two motions of the same microstretch fluid, which

conform to the equations of motion and the constitutive equations.
Let Σ be a closed surface bounding any fluid volume V and qi, νi, ϕ, q ′

i , ν ′
i , ϕ′ ∈

C1in Σ + V ; then∫
Σ

[tjiq
′
i − t ′

jiqi]nj dΣ +

∫
Σ

[mjiν
′
i − m′

jiνi]nj dΣ +

∫
Σ

[mjϕ
′ − m′

jϕ]nj dΣ

+

∫
V

ρ[Fiq
′
i − F ′

i qi]dV +

∫
V

ρ[Ciν
′
i − C ′

i νi]dV +

∫
V

ρ[L ϕ′ − L′ ϕ]dV

=

∫
V

[π′
o ϕ − πo ϕ′]dV . (6.1)

Proof:
The equations of motion for the two systems have the forms

tji,j + ρFi = 0, (6.2)

mji,j + εijktjk + ρCi = 0, (6.3)

mj,j + T − S + ρL = 0 (6.4)
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and

t ′
ji,j + ρF ′

i = 0, (6.5)

m′
ji,j + εijkt

′
jk + ρC ′

i = 0, (6.6)

m′
j,j + T ′ − S ′ + ρL′ = 0. (6.7)

Multiplying (6.2) by q ′
i , (6.3) by ν ′

i and (6.4) by ϕ′ and adding and then integrating
the sum over V, we obtain by using Gauss’ divergence theorem∫

Σ

[tjiq
′
i + mjiν

′
i + mjϕ

′]nj dΣ +

∫
V

ρ[Fiq
′
i + Ciν

′
i + Lϕ′]dV

=

∫
V

[tjiq
′
i,j + mjiν

′
i,j + mjϕ

′
,j − εijktjkν

′
i − (T − S)ϕ′]dV . (6.8)

Interchanging primes, we arrive at the following relation:∫
Σ

[t ′
jiqi + m′

jiνi + m′
jϕ]nj dΣ +

∫
V

ρ[F ′
i qi + C ′

iνi + L′ϕ]dV

=

∫
V

[t ′
jiqi,j + m′

jiνi,j + m′
jϕ,j − εijkt

′
jk νi − (T ′ − S ′) ϕ]dV . (6.9)

Using (2.6)–(2.9) with the aid of the relation

εikn · εnmj = δimδkj − δij δkm,

we get

tjiq
′
i,j + mjiν

′
i,j + mjϕ

′
,j − (T − S)ϕ′ − εijktjkν

′
i + πo ϕ′

= t ′
jiqi,j + m′

jiνi,j + m′
jϕ,j − (T ′ − S ′)ϕ − εijkt

′
jkνi + π′

o ϕ. (6.10)

Subtracting (6.8) from (6.9) and using (6.10) we obtain the required formula.
In the absence of the microstretch force, the relation (6.1) reduces to∫

Σ

[tjiq
′
i − t ′

jiqi]nj dΣ +

∫
Σ

[mjiν
′
i − m′

jiνi]nj dΣ

+

∫
V

ρ[Fiq
′
i − F ′

i qi]dV +

∫
V

ρ[Ciν
′
i − C ′

iνi]dV = 0, (6.11)

a result obtained by Ramkissoon (1975) for a micropolar fluid.

7. Axisymmetric rotation of a rigid sphere in an unbound microstretch fluid
with slip and spin

As an application, we consider the axially symmetric slow, steady rotation of a
sphere, of radius a, with a constant angular velocity Ωo in an unbound microstretch
fluid flow. It is appropriate to use the spherical polar coordinates (r, θ , φ). The velocity
components of the rigid sphere in these coordinates are given by

Vr = 0, Vθ = 0 and Vφ = Ωo a sin θ.

Thus, the velocity and the microrotation vectors have the following components:

q = (0, 0, qφ(r, θ)), ν = (νr (r, θ), νθ (r, θ), 0). (7.1)
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The following boundary conditions are satisfied on the surface of the sphere:

ν

∣∣∣boundary =
n

2
curlq

∣∣∣
boundary

and ϕ = 0 on r = a, (7.2)

where n is the spin parameter that varies from 0 to 1. This parameter is assumed to
depend only on the nature of the fluid and solid boundary.

The slip boundary condition satisfied on the surface of the sphere takes the form

β1(qφ − Vφ) = trφ on r = a, (7.3)

where β1 is termed as sliding friction coefficient. This coefficient is a measure of
the degree of tangential slip existing between the fluid and the solid boundary. It is
assumed to depend only on the nature of the fluid and solid surface (Basset 1961;
Faltas & Saad 2005). In the limiting case, when β1→ ∞, we return to the classical
case of no-slip boundary condition.

Taking the substitutions

P (r, θ) = div ν, Q(r, θ)êφ = curl ν (7.4)

and using the non-dimensional variables

q∗
φ =

qφ

aΩo

, ν∗
i =

a2κ

γΩo

νi , r∗ =
r

a
, ϕ∗ =

ao

πoa2
ϕ, Ω∗ =

Ω

Ωo

,

t∗
ij =

a2

γΩo

tij , m∗
ij =

κa3

γ 2Ωo

mij , m∗
k =

mk

πoa
, N∗

z =
Nz

γΩoa
, (7.5)

the governing equations (2.2)–(2.4) take the form (dropping asterisks for convenience)

{∇2 − N2}P = 0, (7.6)

{L−1 − λ̄2}Q = 0, (7.7)

L−1{L−1 − λ̄2}qφ = 0, (7.8)

{∇2 − �2}ϕ = 0, (7.9)

where

N2 =
2 κa2

(α + β + γ )
, λ̄2 =

(2 μ + κ)κa2

(μ + κ)γ
and �2 =

λ1 a2

ao

.

Moreover, ∇2 is the Laplacian operator and the generalized axisymmetric Stokesian
operator L−1 is defined by

L−1 = ∇2 − 1

r2 sin2 θ
.

Solving (7.6) and (7.8) and retaining only the bound terms, we obtain the non-
dimensional velocity component in the form

qφ =

{
A′

r2
+

B ′
√

r
K3/2(λ̄r)

}
sin θ. (7.10)

It should be noted here that (7.10) represents the non-dimensional (scaled)
velocity component. In order to obtain the physical velocity component we use the
non-dimensional variables of the velocity qφ and the distance r given in (7.5) to get

qφ = a3Ωo

{
A′

r2
+

B ′
√

r
K3/2(λ̄r)

}
sin θ.
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As a special case for a viscous fluid with no-slip boundary condition (κ → 0, β1 →
∞), we have qφ = a3Ωo/r

2 sin θ .
Also, we have

P =
C ′
√

r
K3/2(Nr) cos θ, (7.11)

Q = −a2 λ̄2(μ + κ) B ′

γ
√

r
K3/2(λ̄r) sin θ, (7.12)

where Kν(.) denotes the modified Bessel function of second kind of the order ν and
A′, B ′ and C ′ are constants to be determined from the boundary conditions.

Thus, the microrotation components take the forms

νr =

{
κa2A′

γ r3
+

2(μ + κ)a2B ′

γ r3/2
K3/2(λ̄r) − C ′

N2 r3/2
(2 K3/2(Nr) + NrK1/2(Nr))

}
cos θ,

(7.13)

νθ =

{
κa2A′

2γ r3
+

(μ + κ)a2B ′

γ r3/2
(K3/2(λ̄r) + λ̄rK1/2(λ̄r)) − C ′

N2 r3/2
K3/2(Nr)

}
sin θ.

(7.14)

Applying the boundary conditions (7.2) and (7.3), in non-dimensional form, we
obtain a system of linear algebraic equations in the unknown variables A′, B ′ and C ′,
whose solutions give

A′ =
2

Ao

{nκΓ [γN2(2μ + κ)(λ̄ + 1) + (γ λ̄2(μ + κ) + {(μ + κ) + γ (8μ + 5 κ)}

× (λ̄ + 1))(N + 1)] + (2μ + κ)[nκγ (λ̄ + 1)(N 2 + 3N + 3)

+ (μ + κ)(N 2(γ λ̄2 + λ̄ + 1) + 2(N + 1){γ λ̄2 + (1 − γ )λ̄ + 1 − γ })]}, (7.15)

B ′ =
−γ κλ̄3/2eλ̄

Ao

√
π/2

{3nΓ [(2μ + κ)N2 + 2(3μ + 2κ)(N + 1)]

+ (2μ + κ)[(2n + 1)N 2 + 6n(N + 1)]}, (7.16)

C ′ =
−κa(2μ + κ)N 7/2eN

γAo

√
π/2

{3nΓ [γ λ̄2(μ + κ) + {(μ + κ) + γ (2μ + κ)}(λ̄ + 1)]

+ 2γ λ̄2(μ + κ)(n − 1) + n (2(μ + κ) + γ (4μ + κ))

× (λ̄ + 1) − 2(μ + κ)(1 − γ )(λ̄ + 1)} , (7.17)

where

Ao = (2μ + κ){Γ [N2{3γ λ̄2(μ + κ) + (3(μ + κ) − γ κ)(λ̄ + 1)} + 4(μ + κ)

× {γ λ̄2 + (1 − γ )(λ̄ + 1)}(N + 1)] + 2γ λ̄2(μ + κ)(N2 + 2N + 2)

+ [N2{2(μ + κ) − γ κ} + 4(μ + κ)(1 − γ )(N + 1)](λ̄ + 1)}
and

Γ =
2μ + κ

aβ1

.

The microstretch function ϕ can be obtained, by solving (7.9) and then applying the
second of the boundary conditions (7.2), as follows:

ϕ =
1

�2

{
1 −

K1/2(�r)√
rK1/2(�)

}
. (7.18)
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The non-vanishing components of the stress tensor are given by

trr = tθθ = tφφ =
τ ′
1

�2
, (7.19)

trφ = −
{

(2μ + κ)a2

γ

[
3A′

2r3
+

B ′

r3/2
K3/2(λ̄r)

]
+

C ′

N2r3/2
K3/2(Nr)

}
sin θ, (7.20)

tφr = −
{

(2μ + κ)a2

γ

[
3A′

2r3
+

B ′

r3/2
(2K3/2(λ̄r) + λ̄ rK1/2(λ̄r))

]
− C ′

N2r3/2
K3/2(Nr)

}
sin θ,

(7.21)

tθφ = −
{

(2μ + κ)a2B ′

γ r3/2
K3/2(λ̄r) +

C ′

N2r3/2
[2K3/2(Nr) + NrK1/2(Nr)]

}
cos θ = −tφθ .

(7.22)

Also, the difference between the normal stress and the micropressure is given by

T − S =

{
πoa

3

γV

}
exp(� − �r)

r
. (7.23)

The couple stress tensor has the following components:

mrr =
(β + γ )

γ

{
−3κa2A′

γ r4
− 2(μ + κ)a2B ′

γ r5/2
[3K3/2(λ̄r) + λ̄ rK1/2(λ̄r)]

+
C ′

N2r5/2

[(
6 +

(α + β + γ )N2r2

(β + γ )

)
K3/2(Nr) + 2NrK1/2(λ̄r)

]}
cos θ, (7.24)

mθθ =
(β + γ )

γ

{
3κa2A′

2γ r4
+

(μ + κ)a2B ′

γ r5/2
[3K3/2(λ̄r) + λ̄ rK1/2(λ̄r)]

− C ′

N2r5/2

[(
3 − αN2r2

(β + γ )

)
K3/2(Nr) + N r K1/2(λ̄r)

]}
cos θ, (7.25)

mφφ =
αC ′

γ
√

r
K3/2(Nr) cos θ, (7.26)

mrθ =

{
−3κa2(β + γ )A′

2γ 2r4
− (μ + κ)a2B ′

γ r5/2

[(
3(β + 2γ )

γ
+ λ̄2r2

)
K3/2(λ̄r)

+
(β + γ )λ̄ r

γ
K1/2(λ̄r)

]
+

C ′

N2r5/2

[
3β

γ
K3/2(Nr) +

(β − γ )Nr

γ
K1/2(λ̄r)

]}
sin θ,

(7.27)

mθr =

{
−3κa2(β + γ )A′

2γ 2r4
− (μ + κ)a2B ′

γ r5/2

[(
3(2β + γ ) + β λ̄2r2

γ

)
K3/2(λ̄r)

+
(β + γ )λ̄r

γ
K1/2(λ̄r)

]
+

C ′

N2r5/2

[
3K3/2(Nr) − (β − γ )Nr

γ
K1/2(λ̄r)

]}
sin θ,

(7.28)

mφθ = −mθφ =
τ ′
2K3/2(�r)

�
√

rK1/2(�)
. (7.29)
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The non-vanishing components of the microstretch vector of the problem at hand
also take the following forms:

mr =
K3/2(�r)

�
√

rK1/2(�)
, (7.30)

mφ = τ ′
3

{
(μ + κ)a2B ′

γ r5/2
(3+λ̄2r2)K3/2(λ̄r) +

C ′

N2r5/2
[3K3/2(Nr)] + 2NrK1/2(Nr)

}
sin θ,

(7.31)

where

τ ′
1 =

λoπoa
4

aoγ Ω
, τ ′

2 =
boπoκa4

aoγ 2Ω
and τ ′

3 =
boγ Ω

πoκa4
.

The total couple acting on the surface of the rigid sphere, in non-dimensional form,
is given by

Nz = Ns
z + Nc

z ,

where Ns
z and Nc

z are the total acting couples due to the stress and the couple stress
components, in non-dimensional form, respectively.

We now have

Ns
z = −

∫
S

(r × (n̂ : t)) · k̂ dS, (7.32)

where r = êr , (n̂: t) = trr êr + trθ êθ + trφêφ and k̂ = cos θ êr− sin θ êθ , (êr , êθ , êφ) repre-

sent the unit vectors along the directions of r, θ, φ, respectively, and n̂and k̂are,
respectively, the unit normal vector outward from the surface of the sphere and the
unit vector along z-axis.

Therefore, (7.32) takes the form

Ns
z = −2π

∫ π

0

trφ sin2 θ dθ. (7.33)

Substituting for trφ and then evaluating the resulting integral, we obtain

Ns
z =

8π

3

[
(2μ + κ)a2

γ

{
3

2
A′ + B ′K3/2(λ̄)

}
+

C ′

N2
K3/2(N)

]
. (7.34)

We also have

Nc
z = −

∫
S

(n̂ : m)) · k̂ dS, (7.35)

where(n̂ : m) =mrr êr + mrθ êθ + mrφêφ .
Using the non-dimensional variables (7.5), (7.35) takes the form

Nc
z =

−2π γ

κa2

∫ π

0

(mrr cos θ − mrθ sin θ )sin θ dθ, (7.36)

which can be simplified as

Nc
z =

−8π

3

[
(2μ + κ)a2

γ
B ′K3/2(λ̄) +

C ′

N2
K3/2(N)

]
. (7.37)
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Figure 1. Total couple distribution for n = 1.

Adding (7.34) and (7.37), we obtain the total non-dimensional couple acting on the
surface of the rigid sphere in the following form:

Nz =
4π(2μ + κ)a2

γ
A′. (7.38)

As an application of our main result (4.9), we now obtain the couple on a rotating
sphere. From (7.10), the non-dimensional angular velocity of the fluid flow takes the
form

Ω =

{
A′

r3
+

B ′

r
√

r
K3/2(λ̄r)

}
. (7.39)

Applying the non-dimensional variables (7.5) to the relation (4.9), we can easily obtain
the non-dimensional couple experienced by the sphere as

Nz = 4π
(2μ + κ)a2

γ
lim
r→∞

(r3Ω) (7.40)

=
4π(2μ + κ)a2

γ
A′, (7.41)

which is identical to (7.38).

8. Numerical results
In the present section we present the resultant couple acting on the surface of the

sphere, the velocity and the microrotation components graphically. In figure 1, the
variation of the total acting couple on the surface of the rigid sphere against the
sliding coefficient β1a/μ for different values of micropolarity coefficient κ/μ when
the spin parameter n= 1 is represented. Figure 2 shows the total couple against the
sliding coefficient for different values of the parameter n when κ/μ = 2. Figures 3–5
represent the distributions of the velocity and microrotation components for a
constant value of θ , respectively, against r for different values of the sliding coefficient
β1a/μ when κ/μ = 1 and n= 0.1. Figure 6 shows the variation of the microstretch
against r for different values of the parameter �.
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Figure 2. Total couple distribution for κ/μ =2.
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Figure 3. Velocity distribution.
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Figure 4. Microrotation distribution.
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Figure 5. Microrotation distribution.
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Figure 6. Microstretch function distribution.

9. Conclusion
The following are the conclusions of this paper:
(1) From the obtained formula (4.9), we note that the total couple acting on a rigid

body rotating axisymmetrically in a microstretch fluid has the same value as in the
case of a micropolar fluid. This means that the microstretch force does not contribute
to the resultant couple acting on the surface of the rigid body.

(2) From (4.9) and (4.10), it can be observed that the total acting couple on the rigid
body in a microstretch fluid flow cannot exceed (1 + κ/μ) times the total couple in
the case of Newtonian fluid flow. Also, its minimum value is greater than (1 + κ/2μ)
times No.

(3) The magnitude of the total couple shown in figure 1 is directly proportional to
the value of the slip parameter β1. As a limiting case as β1 → 0, we recover the case
of perfect slip, while the classical case of no slip can be obtained as β1 → ∞.
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(4) From figure 2 it is observed that the magnitude of the total couple increases
with the increase of the value of either the spin coefficient n or the micropolarity
coefficient κ .

(5) For a fixed value of θ , each of the velocity components and the microrotation
components, represented in figures 3–5, varies inversely with r and directly with β1.

(6) From figure 6, it can be shown that near the sphere the values of the microstretch
ϕ increase with the increase of r, and away from the sphere the microstretch ϕ tends
to be a constant. It also increases monotonically with the increase of the parameter �.
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